

Design of biodegradable materials based on fundamental understanding of biodegradability and digital tools

Andreas Künkel Vice President, BASF SE

EUIndTech Kraków, Poland, May 2025

1 Introduction

2 Structural biodegradable polymers – soil

3 Digital tools

4 Conclusion

BASF We create chemistry

Biodegradability 2.0 Holistic approach for biodegradability with different technologies and partnerships

1 Introduction

2 Structural biodegradable polymers – soil

3 Digital tools

4 Conclusion

Certified soil-biodegradable ecovio[®] mulch film as contributor to sustainable agriculture

Dialogue, biodegradation standards and development of <u>certified</u> biodegradable products

ecovio[®] M2351 mulch – biodegradation in soil according to EN 17033

Biodegradation of ecovio[®] M2351 mulch film relative to cellulose control %

181

150

200

250 Time / days

100

89.1

80

20

50

100

At **181 days**, **89.1%** biodegradation, relative to cellulose was measured – absolute biodegradation of 94.4% (±1.7%). Where is the rest?

BASF We create chemistry

Decisive methods for understanding ecovio[®] mulch film's biodegradation in soil

Enzymatic hydrolysis

Microbial colonization

7

★ Modified ¹³C labeling of the monomers

Microbial

biomass

Where does the polymer carbon end up?

Method toolbox: ¹³C labelling, CRDS (Cavity Ring Down Spectroscopy), Nano-SIMS (nanoscale secondary ion mass spectrometry), ¹³C-DNA SIP (DNA - Stable Isotope Probing), soil extraction methods

Conversion into microbial biomass shown by nanoscale secondary ion mass spectrometry (NanoSIMS)

poly(butylene adipate-co-terephthalate) PB<mark>A</mark>T: labeled in adipate

Images reprinted with permission of AAAS. From Zumstein et al., Science Advances 2018;4: eaas9024.

★ Modified ¹³C labeling of the monomers

Conversion of PBAT (all monomers) into microbial biomass has been proven.

1 Introduction

2 Structural biodegradable polymers – soil

3 Digital tools

4 Conclusion

Predictive biodegradation modelling

A novel machine learning model accurately predicts the biodegradation of polymers in different end-of-life environments.

10

1 Introduction

2 Structural biodegradable polymers – soil

3 Digital tools

4 Conclusion

Biodegradability 2.0 Holistic approach for biodegradability with different technologies and partnerships

Biodegradability 2.0 Holistic approach for biodegradability with different technologies and partnerships

BASE We create chemistry